

Research on the Application of Econometric Models in the Integration of Financial Risk Measurement and Accounting Information

Weicheng Qu

The University of California, Irvine, Irvine, The United States

qwcqwc12138@gmail.com

Keywords: Econometric Model; Financial Risk Measurement; Accounting Information; Information Integration

Abstract: This paper focuses on the application of econometric models in the integration of financial risk measurement and accounting information. It reviews the basic theories and application paths of regression models, time series models, panel data models, and simultaneous equation models. It also analyzes key problems in model application such as collinearity and time matching bias, and proposes corresponding optimization directions. The research shows that econometric models provide multiple tools for the integration of the two fields. Through targeted optimization, the accuracy of risk assessment can be improved, which not only enriches cross-disciplinary theory but also provides decision-making references for financial risk management practices.

1. Introduction

1.1. Research Background

Against the background of accelerating globalization and increasingly complex financial markets, the risks faced by financial institutions and enterprises are becoming more diverse and complicated. Quantifying financial risk has become an important task in the financial industry. At the same time, accounting information, as an important reflection of a firm's business activities, also faces the issue of how to be more accurately measured and associated with financial risk.

As a quantitative analysis tool, the econometric model can provide key decision support by modeling, estimating, and forecasting economic phenomena. Therefore, it has gained growing attention in financial risk measurement. In recent years, research on the application of econometrics in the fields of finance and accounting has deepened, providing an effective method and path for the integration of financial risk measurement and accounting information. However, research that organically combines the two still needs further development.

1.2. Research Significance

Financial risk measurement is a core part of financial supervision, risk management, and financial decision-making, while accounting information is an important source for financial risk analysis. Therefore, the deep integration of the two has important theoretical and practical significance. On one hand, this research helps to enrich the application of econometric theory in modern finance and accounting, promoting the combination of economic theory tools with real economic activities. On the other hand, through the application of targeted models, it can improve the accuracy and reliability of financial risk prediction, providing more scientific decision-making support for enterprise risk management. This study can also enhance the role of corporate accounting information in risk management, provide a basis for enterprise value evaluation and risk warning, optimize resource allocation, and reduce uncertainty risk.

1.3. Definition of Core Concepts

In order to identify the framework and direction of the research, there is a need to establish the main ideas. Econometric models are models that employ mathematical and statistical processes to develop correlations among economic variables and find extensive application in scarcely any

economic research and practice. The financial risk measurement typically incorporates the quantitative analysis of the credit risk, market risk, and operational risk to determine and measure the levels of risks with the help of certain indicators and approaches ^[1].

Accounting information refers to the information generated through accounting activities that reflects an enterprise's operation status, financial results, and cash flows. In this study, the integration among the three mainly involves how to incorporate accounting information into financial risk quantification and predictive analysis through econometric models.

1.4. Research Framework

This study centers on the application of econometric models in the integration of financial risk measurement and accounting information. The research structure is divided into several parts. First, it systematically reviews the basic theories of econometric models, financial risk measurement, and accounting information. Second, it explores how different types of econometric models can achieve effective integration of financial risk and accounting information, including regression models, time series models, panel data models, and simultaneous equation models. Third, it analyzes key problems encountered during application and proposes corresponding optimization suggestions. Finally, it summarizes the whole paper and presents suggestions and prospects for future research. Through this research framework, it hopes to provide useful references for both theory and practice.

2. Basic Theories

2.1. Basic Types of Econometric Models

Econometric models are tools that describe quantitative relationships among variables through mathematical equations, and the core is to use statistical methods to quantify the association among variables ^[2]. Common basic types include: regression models, which describe the impact of independent variables on dependent variables through linear or nonlinear equations, such as multiple linear regression which can analyze the relationship between several accounting indicators and risk indicators, being simple to operate and having strong interpretability; time series models, focusing on the change patterns of variables over time, such as the ARIMA model used to capture the historical trend of risk indicators, and the GARCH model which is good at describing the volatility clustering of financial data, suitable for analyzing the continuous impact of the dynamic change of accounting information on risk ^[3]; panel data models, which incorporate both cross-sectional data of different individuals (such as multiple companies) and time series data, can control individual differences and time trends, and are often used for cross-company and multi-period analysis of the relationship between risk and accounting information; simultaneous equation models, which describe the two-way influence between variables through multiple equations ^[4]. For example, analyzing both the effect of accounting information on risk and the counter-effect of risk on accounting information, which can avoid the one-sidedness of a single equation. Each of these models focuses on different aspects, providing diversified analytical paths for integrating financial risk and accounting information.

2.2. Core Content of Financial Risk Measurement

Financial risk measurement is the quantitative evaluation of potential losses in financial activities, and the core content focuses on three main types of risks. Market risk refers to losses caused by fluctuations in market prices such as interest rates, exchange rates, and stock prices, and commonly used measurement indicators include value at risk (VaR), which is the maximum possible loss within a specific period under a certain probability, and volatility, which reflects the amplitude of asset price fluctuations through the standard deviation of returns, directly showing the uncertainty of risk ^[5]. Credit risk refers to losses caused by the default or reduced solvency of counterparties. Key indicators include the probability of default (PD), which is the possibility that a debtor defaults within a certain period ^[6], and the loss given default (LGD), which measures the proportion of actual losses to risk exposure after default. The combination of the two can assess the potential scale of credit risk ^[7].

Liquidity risk refers to the risk that assets cannot be realized in time at a reasonable price. Common indicators include the liquidity ratio (such as the ratio of current assets to current liabilities), reflecting short-term debt-paying ability, and the liquidity gap ratio, which is the difference between cash inflows and outflows within a certain period, used to assess the tension level of the capital chain. These indicators quantify risk from different dimensions and provide concrete analytical objects for the subsequent integration with accounting information.

2.3. Core Content of Accounting Information

Accounting information is the record and reflection of an enterprise's financial activities, and the core content focuses on the quantitative presentation of three kinds of capabilities. Profitability information reflects the enterprise's ability to obtain profit, and key indicators include net profit, which directly shows operational results, return on equity (ROE), which measures the earnings level of shareholders' equity, and gross profit margin, which reflects the efficiency of core business profitability through the proportion of income and cost difference. This type of information can indirectly reflect the enterprise's foundation to resist risk—profit stability. The solvency information will give the ability of the enterprise to make repayments on debts and the key indicators include the asset-liability ratio (the ratio of total liabilities to total assets) which gives the level of enterprises financial leverage and default risk on debt, the current ratio (the ratio of current assets to current liabilities) which gives the ability of the enterprise to pay short term debt, and interest coverage ratio (total earnings before interest and taxes divided by total interest expenditures) which measures the ability of the enterprise to meet interest payment which is directly related to credit risk. The information of the operating capacity shows the efficiency of operations in the assets of the business, including accounts receivable turnover ratio (the ratio of the sales revenue to the average accounts receivable), indicating the efficiency of capital turnover and inventory turnover ratio showing the efficiency in converting inventory to cash. This type of information affects the liquidity of enterprise funds and is closely related to liquidity risk. These indicators describe the enterprise situation from a financial perspective and provide basic data support for risk measurement.

2.4. Theoretical Basis of the Integration of the Three

The integration of econometric models, financial risk measurement, and accounting information is based on two levels of core theoretical logic. The first is the theory of information complementarity. The indicators of financial risk measurement (such as VaR and probability of default) mostly come from market trading data, reflecting short-term market expectations, while accounting information (such as asset-liability ratio and ROE) comes from corporate financial statements, reflecting long-term business fundamentals. The two describe risk from different time dimensions and information sources and can complement each other to improve the comprehensiveness of the evaluation. For example, market risk indicators may be affected by short-term sentiment, while the profit stability of accounting information can correct this short-term bias. The second is the risk transmission mechanism. Changes in enterprise accounting information can be transformed into financial risk through market reaction, such as the rise in the asset-liability ratio possibly increasing the probability of default (credit risk), which then leads to a decline in stock prices (market risk); financial risk can also have a reverse effect on accounting information, such as the intensification of market risk possibly increasing financing costs and compressing net profit (accounting information). This two-way transmission relationship provides an analytical logic for econometric models—to quantify the transmission path and intensity through models, realizing the organic integration of risk and accounting information. The efficient market hypothesis also provides support for integration, that is, the market will gradually absorb accounting information and reflect it in risk indicators, and models can capture the quantitative pattern of this absorption process.

3. Application Paths of Econometric Models in the Integration of Financial Risk Measurement and Accounting Information

3.1. Regression Model: Integrating Accounting Indicators and Market Risk Measurement

Regression models achieve the quantitative integration of accounting indicators and market risk measurement by constructing causal relationship equations between variables ^[8]. The core logic is to take market risk indicators (such as VaR, daily return volatility) as the dependent variable, select key accounting indicators as independent variables, and reveal the influence strength of accounting information on market risk through regression coefficients.

In specific applications, first select accounting indicators closely related to market risk: for example, debt-to-asset ratio (reflecting financial leverage), net profit growth rate (reflecting profit stability), current asset turnover ratio (reflecting short-term asset liquidity), etc. These indicators reflect the fundamentals of the enterprise from solvency, profitability, and operational dimensions, and may be transmitted to price fluctuations through market expectations. Then construct a multiple linear regression equation, such as “market risk volatility = $\alpha + \beta_1 \times$ debt-to-asset ratio + $\beta_2 \times$ net profit growth rate + $\beta_3 \times$ current asset turnover ratio + ϵ ,” where α is the constant term, β is the regression coefficient, and ϵ is the error term.

By estimating regression coefficients, the influence direction (positive/negative correlation) and magnitude (coefficient size) of a single accounting indicator can be quantified. For example, if the β of debt-to-asset ratio is significantly positive, it indicates that the higher the enterprise leverage, the greater the market risk volatility. This integration method is easy to operate and can intuitively identify core accounting factors driving market risk, providing clear financial indicator references for risk warning.

3.2. Time Series Model: Integrating Accounting Information Dynamics and Risk Volatility

Time series models focus on the variation of variables over time and can capture the temporal relationship between dynamic changes in accounting information and risk volatility ^[9]. The core is to match time series data of accounting information (such as quarterly financial indicators) with time series data of risk volatility (such as monthly market risk VaR) and model the dynamic influence path between them.

In application, first process the time consistency of data: because accounting information (such as annual reports and quarterly reports) has disclosure lag, it should be matched with the risk data of the same period or the following period (for example, Q1 2023 financial report data matched with Q2 2023 market risk data). Common models include GARCH models, which introduce lagged accounting indicators into traditional volatility equations, for example, “risk volatility at time $t = \omega + \gamma \times$ risk volatility at $t-1 + \delta \times$ net profit volatility at $t-1 + v$,” where ω is the constant, γ reflects the persistence of risk volatility, and δ measures the impact of previous accounting information volatility on current risk volatility.

This integration method can reveal the lag effect of accounting information changes. For example, if δ is significantly positive, it indicates that an increase in net profit volatility in the previous quarter leads to a rise in market risk volatility in the current quarter. By dynamically tracking the temporal relationship between the two, risk volatility trends can be predicted more accurately, especially suitable for analyzing the gradual transmission of deteriorating financial conditions to market risk.

3.3. Panel Data Model: Integrating Multi-Dimensional Accounting Information and Credit Risk Assessment

Panel data models combine cross-sectional (multiple entities) and time (multiple periods) dimensions to comprehensively integrate multi-dimensional accounting information and credit risk assessment, overcoming the limitations of single-dimension analysis ^[10]. The core is to include multi-period data of multiple enterprises, control for individual differences and time trends, and quantify the comprehensive impact of accounting information on credit risk.

In specific operations, the cross-sectional dimension selects enterprises of different industries and sizes (such as 50 listed companies), and the time dimension covers 3-5 years of quarterly data; credit

risk indicators use probability of default (PD) or credit rating (quantified numerically) as the dependent variable; independent variables include multi-dimensional accounting information: solvency (debt-to-asset ratio, interest coverage ratio), profitability (ROE, gross profit margin), operational capacity (accounts receivable turnover), etc., while introducing annual dummy variables (to control macro environment changes) and enterprise fixed effects (to control unique enterprise attributes).

By estimating a fixed-effects panel model, the net impact of each accounting indicator on credit risk can be separated. For example, if the coefficient of interest coverage ratio is significantly negative, it indicates that the higher this indicator (the stronger profit coverage of interest), the lower the probability of default. This integration method considers both enterprise differences and time changes, reliably identifying financial drivers of credit risk, and providing a unified framework for cross-enterprise and cross-period credit assessment.

3.4. Simultaneous Equation Model: Integrating the Two-Way Influence of Risk and Accounting Information

Simultaneous equation models construct multiple interrelated equations to describe the two-way causal relationship between risk and accounting information, avoiding bias caused by neglecting reverse effects in a single equation [11]. The core is to set two equations: one reflects the influence of accounting information on risk, and the other reflects the feedback of risk on accounting information, thereby fully presenting the interaction mechanism.

For example, in integrating credit risk and accounting information, Equation 1 can be set as: “probability of default = $\alpha_1 + \beta_1 \times$ debt-to-asset ratio + $\beta_2 \times$ ROE + ε_1 ” (accounting information affecting risk); Equation 2: “debt-to-asset ratio = $\alpha_2 + \gamma_1 \times$ probability of default + $\gamma_2 \times$ industry average debt ratio + ε_2 ” (risk affecting accounting information). In Equation 1, higher debt-to-asset ratio and lower ROE may lead to higher probability of default; in Equation 2, rising default probability may increase financing difficulty, thus raising the enterprise debt-to-asset ratio (γ_1 positive), and industry average debt ratio as an exogenous variable controls industry commonality.

After addressing endogeneity using instrumental variable methods (for example, using enterprise founding years as an instrument for debt-to-asset ratio), simultaneous equations can estimate the bidirectional coefficients simultaneously. This integration method can reveal the “accounting information → risk → accounting information” feedback loop. For example, high leverage increases default risk, and high risk further aggravates leverage, providing targeted basis to break the cycle of risk and financial deterioration.

4. Key Issues and Optimization Directions in Applications

4.1. Key Issues and Optimization in Regression Model Applications

The key issue is that accounting indicators are prone to multicollinearity. For example, debt-to-asset ratio is often highly correlated with interest coverage ratio, and current ratio is often highly correlated with quick ratio, which can cause regression coefficient estimates to be distorted, making it difficult to accurately distinguish the impact of individual indicators on market risk. The optimization direction can adopt principal component analysis to condense multiple correlated accounting indicators into a few uncorrelated principal components, retaining core information while eliminating multicollinearity; or use stepwise regression to select variables based on significance level, keeping only the accounting indicators with the strongest explanatory power for risk, improving model stability.

4.2. Key Issues and Optimization in Time Series Model Applications

The key issue is the poor time matching between accounting information and risk data. Accounting information (such as annual or quarterly reports) has disclosure lag, while risk data (such as daily volatility) updates in real time. The inconsistent time dimensions can cause the model to capture associations that deviate from reality.

Optimization can use a rolling window method, dividing risk data according to the accounting information disclosure period (such as quarterly), so that the time ranges are synchronized; or dynamically adjust lag orders, determining the optimal lag based on AIC/BIC criteria, allowing the lagged effect of accounting information to better match the temporal features of risk volatility and reducing time mismatch errors.

4.3. Key Issues and Optimization in Panel Data Model Applications

The key issue is individual differences in accounting information quality. The reliability of accounting data varies among enterprises; some may engage in earnings management or data manipulation, introducing noise into the panel data and affecting the consistency of cross-enterprise analysis.

Optimization can be done through data cleaning, using the 3σ rule to remove obvious outliers (such as ROE far above the industry average); or conduct industry standardization, transforming accounting indicators into deviations relative to industry averages, eliminating interference from industry differences, making accounting information across enterprises more comparable.

4.4. Key Issues and Optimization in Simultaneous Equation Model Applications

The key issue is that endogeneity of variables is difficult to fully control. Risk and accounting information have two-way effects (for example, higher risk increases financing costs, which worsens accounting profits). Ignoring this endogeneity can lead to biased parameter estimates.

Optimization requires introducing exogenous instrumental variables, such as using industry policy changes as instruments for risk (policies affect the risk of individual enterprises but are not directly related to their accounting information), or using enterprise founding years as instruments for accounting indicators (founding years affect accounting information stability but are not directly related to current risk). The instrumental variable method can reduce the interference of endogeneity on estimation results.

5. Conclusion

This study focuses on the application of econometric models in the integration of financial risk measurement and accounting information. Through systematically reviewing the basic theories, application paths, and key issues, the following conclusions can be drawn:

The econometric models can be used to effectively combine the financial risk and accounting information. Regression models provide a rough understanding of the influence of accounting measures on market risk; time series models can provide the desirable variability of the relationship between the two; panel data model can provide cross-enterprise and multi-period assessment of credit risk; when the mechanisms of the two-way relationship are fully reflected in the simultaneous equation model. The four models have got their focus and they all help in building a multi-dimensional model of integration analysis.

Although issues exist in applications, such as multicollinearity, time mismatch, differences in data quality, and endogeneity, optimization methods like principal component analysis, rolling window method, data standardization, and instrumental variable method can significantly improve model reliability. This paper contributes to the theoretical use of econometrics on the cross-road of finance and accounting and offers realistic directions in the sphere of risk measurement in reality which may offer valuable sources to enterprise risk management and management-related decision-making.

References

- [1] Gu X J. Financial Risk Management: Theory, Technology and Application [M]. Lixin Accounting Publishing House, 2006.
- [2] Xu Z Y, Song X X, Qiao B. Principles and Applications of Econometrics [M]. Tsinghua University Press, 2016.

[3] Hua W J. Volatility analysis of Shenzhen stock market based on GARCH family models [J]. *Contemporary Economy*, 2008(18): 2. DOI:CNKI:SUN:DDJX.0.2008-09-090.

[4] Jin T L, Guo J J. Analysis on problems and countermeasures in the specification of panel data models [J]. *The Journal of Quantitative & Technical Economics*, 2004(10): 5. DOI:10.3969/j.issn.1000-3894.2004.10.018.

[5] Zhao X J. Research on risk measurement, contagion paths and early warning of major financial markets in China [D]. South China University of Technology, 2018.

[6] Lü C X, Qiao B. Analysis of the relationship between credit and “default” behavior [J]. *Journal of Xidian University: Social Sciences Edition*, 2006, 16(1): 5. DOI:10.3969/j.issn.1008-472X.2006.01.005.

[7] Luo R G, Liu H. Default probability and loss given default: new tools for credit risk management [J]. *Finance and Accounting*, 2005(5): 4. DOI:CNKI:SUN:JRkj.0.2005-05-008.

[8] Wang Q Y, Aruna, Zhu A F. Abnormalities in financial markets and the construction of a systemic risk early warning indicator system: from the perspective of information spillover [J]. *Financial Regulation Research*, 2024(11).

[9] He Y. Analysis of temporal characteristics of financial time series and research on corresponding risk measurement methods [D]. Harbin Institute of Technology, 2015. DOI:10.7666/d.D754273.

[10] Doumpos M , Niklis D , Zopounidis C ,et al. Combining accounting data and a structural model for predicting credit ratings: Empirical evidence from European listed firms[J].*Journal of Banking & Finance*, 2015, 50(jan.):599-607.DOI:10.1016/j.jbankfin.2014.01.010.

[11] Kelejian H H , Prucha I R .Estimation of Simultaneous Systems of Spatially Interrelated Cross Sectional Equations[J].*Journal of Econometrics*, 2004, 118(1-2):27-50.DOI:10.1016/S0304-4076(03)00133-7.